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... INTRODUCTION

As semiconductor technology continues to pursue the scaling-down of
IC device dimensions into the submicron (less than ten thousand Angstroms)
regime, many novel and interesting questions will emerge concerning the
physics of charged particles in semiconductors. One of the more important
topics to be considered is that of the appropriate transport (1) picture

to be used for a given spatial and temporal regime. Moreover, from the X

point of view of device physics, it is most desirable to have a microscopic

description of semiconductor transport which is computationally manageable

or at least amenable to phenomenological treatment so that its properties

can be meaningfully incorporated into device simulations. In this paper
attention is focused on a useful transport methodology for the ultra-
submicron regime., At present, military electronic devices with transit ;
lengths in the ultra-submicron region are coming to fruition due to the ‘

advent of MBE (2) processing so that the need for an appropriate descrip-

tion of transport in this regime is indeed imperative.
Semiconductor transport in the ultra-submicron regime approaches the

category of quantum transport. This is suggested by the fact that within

the effective mass approximation the thermal deBroglie wavelength for
electrons in semiconductors (see Fig. 1) is of the order of ultra- .
submicron dimensions. Whereas classical transport physics is based on the
concept of a probability distribution function which is defined over the
phase space of the system, in the quantum formulation of transport physics,
the concept of a phase space distribution function is not possible

inasmuch as the non-commutation of the position and momentum operators _
(the Heisenberg uncertainty principle) precludes the precise specification
of a point in phase space. However, within the matrix formulation of )
quantum mechanics, it is possible to construct a "probability" density :
matrix which is often interpreted as the analog of the classical distri-
bution function. :
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| There is yet another approach Fo the formulation Of quantid Erandfort
based on the concept of the Wigner distribution function (WDF) (3). This

‘formalism is particularly attractive for use in ultra—-submicron device
‘transport in that it contains all of the quantum mechanical information ;
about the state of the system yet has elements of the classical picture
implicitly built in. Thus, the intent of this study is to explore the
‘potential usefulness of the WDF as well as other possible quantum distri- |
‘bution functions for describing quantum (ultra-submicron) device transport .
in semiconductors. To this end we first review the salient features of i
‘the WDF and then discuss a new result, the derivation of the first three !

quantum moment equations using the WDF. It is shown that the moment equa-~
tions contain quantum corrections to the classical moment equations; these
quantum terms are non-negligible when the transit lengths are of the order
of the carrier deBroglie wavelength.

THE WICNER DISTRIBUTION FUNCTION

The Wigner distribution function (3) is generally defined in terms of |
all the generalized coordinates and momenta of the system as
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However, for simplicity in_this paper, we discuss the properties of a
single coordinate and momentum WDF:
, »

P, (x,p) = -2-}'“— f dy v (x + %)\y (x - .%) eipy/ﬁ @)

where Y(x) represents the state of the system in the coordinate represem:a-,
‘tion. Although we will be t:reating the WDF for the special case of pure
states, the adaptation of this formalism to include mixed states is accom- |

i
i
i
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i
i
i
1
i

o Gy e e
; ipy/n
5 Py(x,p) = i Pl 505 I d}r‘l‘ (x—+ 1) Y, (x - ‘2!) e P’ ]
_ ?where,_lfn,,i,smg}}s.‘.pmb.ab_i,l_..i.tx,t_z,b@_,.i.n. state "n". (For example, for s SXSte“‘;
’ ‘in-contact-with—a-heat -bath-at-constant-temperature, P_ = ¢ ~Fa/kT )

. The distribution function of Eq. (2) has interest?ng properties in ;
.that the integration of this function over all momenta leads to the proba- :
‘bility density in real space; conversely, the integration of this function
-over all coordinates leads to the probability density in momentum space.
In mathematical terms,

| Zm Py(x,p) dp = ¥ (x)¥(x) | (3a)
| LPw(x,p) dx = ¢" (P é(p), (3v) ;
jwheré :

¥(x)dx.

o(p) = 2my M2 [ giex/m

It follows immediately from Eq. (3) that, for an observable W(x,p)
which is either a function of momentum operator alone or of position

‘operator alone, or any additive combination therein, the expectation value
of the observable is given by

<W>" If WPV(X.P) dx dp, ) .

1
i
' !
‘which is analogous to the classical expression for the average value. i
Herein lies the :lnterest:lng aspect of the w:lgner distribution functiow thc




. unique [Py(x,p) of Eq. (2) is not the only bilinear expression (3-5) in ¥
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result of Eq. (4) suggests that it is possible to transfer many of the re- @
sults of classical transport theory into quantum transport theory by simply’
replacing the classical distribution function by the Wigner distributfon
function. However, unlike the density matrix, the Wigner distribution i
function itself cannot be viewed as the quantum analog of the classical ;
" distribution function since it is generally not positive definite and non- ;
!

that satisfies Eq. (3)].
Further resemblance of the Wigner distribution function to the classi—
. cal distribution function is apparent by examining the equation of time ;
evolution for Py(x,p). Upon. assumlngthat?(x) in Eq. (2% satisfies the é
Schrodinger equation for a system with hamiltonian H /2m + V(x), it can;
be readily shown that Py(x,p) satisfies the equation

7T (p/m)aPWLaxq- LR S N — (5)
yhere |
| 2o+l
 een --2 7 o2t Mgy T Fen) (6)
W h =0 (2n + 1)! ax2n+1 aP2n+1

fIt is evident that in the limit % > 0, 6 » Py; in Eq. (6) becomes !
. '
. !

@+ P ==(3V/3x) (3P /3p) (7

‘g0 that Eq. (5) reduces to the classical collisionless Boltzman equation. !
The Wigner distribution function defined in Eq. (2) is derivable (8) |
from the Fourier inversion of the expectation value (with respect to state .

— 7(x)) of the operator ei(rp+ex)(here [x and p]satisfy the commutation |
relation [X,p] = ih). As such,

P, (x,p) = 2—3’3 If cw(r,e)e"“"’*"")dr ds, (8a) |
?where ,
€u(1,0) = [ ¥ el FPHD y ) 4, (8b)

fand the interval of integration is (~w,=) unlessbthe;rv’iu specified. In
‘order to show that the right-hand side of Eq. (8a) is indeed the Wigner
duttibut:lon function as defined in Eq. (2), note, from the Baker-ﬂauodorff
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‘Since (A'IeigAlA") - e1%A §(A' - A") in the A'-representation, C,(E) in
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theorenm (9)_’ that ei(Tp‘ta,,_{) can“b.e written - - el v e .
4

e:l('tp+6x) - eirp/Zeiaxei‘rp/Z , (9

;in which case Cw(T,G) of Eq. (8b) becomes

Cw(‘l',e) = f [e"i'rp/2 ¥ (x)) * o10x [e—irp/Z ¥ (x)] dx (10)
which further reduces to T
| -, |
Cy(r;0 = [ ¥ (x - e ™ ¥ (x + dgrh) dx..

(11)

i

e & - ~ - ———

;-Then, by inserting CW(T,O) of Eq. (11) into the right-hand side of Eq. (83),?
integrating over the variable & by using the relation !

f eie(x'_x") dé = ZWG(X'-X”),

‘and letting T = y/fi, the desired result is obtained.
The method outlined above to arrive at the Wigner distribution func-
tion is based on the notion of a characteristic function. T}e character-

istic function of an observable, A, with respect to state |‘l‘ (here, the
Dirac notation is utilized for purposes of generality) is defined as

c (0 = (¥|e!®|v), a2

where £ is a real parameter. Assuming A to possess an eigenvalue spectrum !
‘given by AIA’) = A IA'), Cp(E) can be evaluated in the A'-representation as

c, (&) = [ an [ aa" {¥|a") {a'|ei®Ala) {arly) . a3 |

‘Eq. (13) reduces to

| ca®) = [ aare' |y, |2, (1)

‘where IYA.lz - I(A'IY)IZ z P(A'), the probability distribution function for

e cr——— P - B -
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“measuring A'Awhile in_ state l?).. Hence, the characteristic function “for
A is the Fourier transform of the probability distribution function P(A').
Subsequent inversion of Eq. (14) above leads to

f ~1EA’

P(A') = -2117} cy(E)e dE. . (15)

e e e e e e e e e oo e e e oot i

The Wigner distribution function was derived by taking the Fourier
i(Tp+6%)

~ transform of the characteristic function for e + In view of the

connection between the probability distribution function and the character-.
istic function for a given observable, this approach seems to be a natural
way of obtaining a distribution function for momentum and position. Unfor-;
tunately, the noncommutative nature of the two observables destroys the ;
convenient probability interpretation of _the characteristic function :
imglic1t in Eq. (15). L

i In order to demonstrate this goint assume the characteristic functionx

for two noncommuting observables, A and B to be
I

c (5152) = (vlei(E]A'FEgB)IW) . (16)

Observables A and B are assumed to have eigenvalue spectra
Ala*) = a"]a'), B[s')=3'|B"). (17)

and are chosen so that [A, [A,8]]1 = [8, [4,8]]-=
This assumption is imposed so that the identity

A5 AFEB) | 1E,A 1EB —§,§,(A,B]/2 (18)

may be used. :
: Inserting Eq. (18) into Eq. (16) while obtaining the matrix elements §
; i£.A
of e™”1
4n

ECAB(Elgz) - e—zlzzlmllz‘f da' [ aB’ ei(EIA'+E2B')<‘l’|A'><A'IB')<B'|?)(19) ]

in the A-representation and eiEZB in the B-representation results

In Eq. (19), it is assumed that [A,B] is a c-number independent of the
eigenvalues A' and B'. We define F(A',B'), the generalized Wigner distri-
‘bution function, to be
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LFANBY = (v[a)(ateetlvy, @0

so that * ;

oE16,04,B1/2 ~1(£,AT+E, BY) 1)

1
‘ Tt R =
F(A',B") pr—y del fag, R CARAT

T—¥t—ie--evident from Eqs. (20,21) that
o i

[ F(a",B") da' =-|(B* {v)} 21" f-a8,-€,500,6,7e 71528 (22a) |

T oo !

.and

I FAV,B')dB' F [(A'lv)l2 ”‘ f dEl c (El,O)e -16AT (22b) |

Thus, Eq. (21) establishes the relationship between the characteristic
‘function for two arbitrary noncommuting observables and the generalized :
;Wigner distribution function. The generalized distribution function has ,
‘the essential properties of the conventional Wigner function in that an i
integration of the generalized function over the eigenvalue spectrum of one
observable leads to the probability density in the canonically conjugate |
observable [ Eq. (22)]. |

There is no simple probability interpretation of F(A',B') in Egs. (20
21) because of the necessary overlap between the states of the noncommut ing
observables, However, if A and B are made to commute so that |A') and IB')
are a common set of eigenvectors, then F(A',B') reduces to the probability
distribution function for A and 6

Finally, it is ngted that the conventional Wigner distribution func-
tion for observables A and B is obtained from

i
|

2n? Jag, Idez C,p(€)s8))e

-with Cag(£182) defined in Eq. (16), whereas the alternative distribution !
-function, F(A',B'), introduced in Eqs. (20,21) differs from the Wigner

function due to the presence of the phase faccor eEIEZIA /2 in the inte-'
'grand of Eq. (21). For A=xand 8 = p, By(x,p) in Eq. (23) reduces to the
‘Wigner function of Eq. (2), whereas F(x,p) defined from Eq. (20) becomes

|l

Fx,p) = 1m j dy‘l’ ) ¥(x - y)e‘”’“ =2 "1/2 ¢ (x)e“”"" ', (20
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where ¢(p) is defined in Eq. (3b).. It ib evident that there is a family’
of functions which are bilinear in ¥ yet satisfy the sum rules of
Eqs. (3a,b).

There are some interesting questions to be resolved concerning the
uniqueness and positive definiteness of Wigner-type quantum distribution
functions. Nevertheless, these distribution functions serve a useful pur-~
pose for calculating quantum mechanical observables in transport N

studies and numerous solid-state (10,11) problems.

MOMENT EQUA?IQNS
In this section, we derive the first ‘three moments of a "Wigner-
Boltzmann'-like transport equation, =~ =

P
e XA et '] — O W Ly O P W e e 5=
N Tk i b LR Sl G v ~(25)7

I
H

.This equation was constructed to include an ad-hoc collision term which may
‘not necessarily express the same phenomenology as that of the classical ;
‘Boltzmann transport equation, since P, is not a true probability distritu- |
tion function. These problems are conceptually reduced when dealing with
moments in a relaxation approximation. The moment equations are obtained
by multiplying Eq. (25) by an appropriate function of momentum, ¢(p), and
‘then integrating over all momenta to obtain:

34> 1 3
3t +m A% <¢p>

t

3 Ry 1 a2 a2ntl ot %
‘-nﬁo 21 o7 ;;EH;T V(x) I ¢ (p) 2n+1 w = <¢( > (26)

coll, .

‘where < > refers to an integration over momentum. In making the assump-

tions that ¢(p) be an analytic function of momentum and that P (x,p) vanish

.at the momentum limits, it follows that

an+l '
- 2n+l 2% 4 (p) P_d (27)
[ oo ( T 2,) dp = (-1) f( ap2n+1 1)) P ;

-
<
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“and that Eq. (26) becomes

9<¢> 179 %
¢ T n x P i

2n 2n+1 g2n+l ;
+2 (0 gy G vt c a5 -
n=0 B ax2nkl . ap2 ol 9% cold, :

: 2
For specific values of ¢(p) f”po, P;“aFngEW Eq. (28) becomes

p .1 93 z
5= = o p-> -0, (292) 5
SR a<3pt> +—7::l'“~3§_-<p2> 4+ p- -%Y..s <p ‘%‘)‘“""“2”" ..«-.”—..._-.-_-.-;(2.911)4:;
.o e VOSSP AU N coll. :
: | !
eo 13 2 1 93 _3, ,<p> aV_ _p2 (3w :
s 7m 9t P P37 ax Pt Bx—<2m(6t)coll> (2%¢) |
.where upon reduction i
: I
n * n-j ]

n n! ajw 3, “¥(x
<p > = (—-——) Z ( 1) (n"'_])-’j! ;X) . n-(j) > (30)
=0 ) ax ;
thereby showing the dependence of < >, Forn=0,1 2, 3 we show <pn5 ’

p » Ly

explicitly: {
!
* * i
<p’>=vy, <pl>= g% (v %% 4 %%;- , (31a) .
i
2 i
* .- {
2y o (R * 32y ay" aY . a2y f
<p (21) (v -—7x 2 S S5 3% x ¥), (31b) :
i
2y 2% 33\}:*
SRS NRUT - PSS EY - 1 A

Note that use of Eqs. (31a) in Eq. (29a) results in the correct quantum
mechanical continuity equation. .

UL PO R b




IAFRATE

In order to see the tran31tion between the quantum and classical -

regimes, we invoke a wavefunction of the form ¥(x,t) = A(x, t:)eis(x t)fh T
‘and so :

i

* 3 '

N A2(x,t) = ¥ ¥ = px,b) , ﬁ %fﬁ) = v(x,t) (32) |

_ where p(x,t) is the probability density and v(x,t) is the ensemble veloc-
-+ ity., Inserting the wavefunction of Eq, (32) into Eq. (31) results in

<05 = plryE) ypln = mp (338)
Ve i
S S . m2.. 2 e :
k e, T T < pZ > _——-—(“m_\.r)-z_p - ”4—-‘ P’ —-z-aa Lnp - "'(‘333)";
. 32 2 2
<p3> = (mv)p - —:‘—p{&nva—xzﬂ.np +33;2_ (mv)} . (33c)

, K It is evident from Eq. (33) that the terms possessing an explicit
] ‘dependence on "#i" are the quantum corrections to the classical momentum~
3 : . density moments. Furthermore, insertion of these momentum-moments into
L Eqs. (29) results in a set of moment equations which contain explicit
i ‘quantum corrections as well. Of course, as W-+0, these moment equations ;
q ‘reduce to the classical, zero temperature, moment equations. i
i , The logarithmic derivative term appearing in Eqs. (33) is not uncom-
- mon; such a term appears in the real part of the Schrodinger equation when
: ‘the wavefunction associated with Eq. (32) is used (9). In the limit where'
! .this term is negligible, the Schrodinger equation goes over to the
‘Hamilton-Jacobi equation. '
We have made order of magnitude estimates of the strengths of the :
‘quantum correction term appearing in Eq. (33). Using a_Gaussian spatial
‘variation for p(x), and a thermal ensemble value for mv2 typical of :
central valley GaAs electrons, we find that the quantum correction is sub-!
' stantial for distances of the order of 100°A.

SUMMARY

In this paper&f;;‘;;;£>putsforth a formalism for treating ultra-
: gubmicrolt device transport. The formalism results in a useful and
. attractive methodology for descr1bing~GQuantuE““device transport in that
, ' the theory is derived from a fully quantum mechanical representation, yet
y "implicitly contains elements of the semiclassical semiconductor transport
C picture, . The basic_three semiconductor quantum transport equations were .
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derived using the Wigner distributlon functlon. These tﬁensport equations
were shown to contain explic1t quantum corrections; these: quantum correc-
tions are non-negligible when the transit lengths of the semiconductor
device are of the order of the carrier deBroglie wavelength. Since the
carrier deBroglie wavelength for carriers is of the order of hundreds of
angstroms in III-V device materials of interest to the Army, the quantum
description of transport as described here will play a vital role in :
preuicting the electrical "behavior of present and future generdtion ultra-
submicron devices. N

In future studies, -we—plan to.expand-édr theoretical effort3d-to
include device modellng of submicron and ultra-submicron semiconductor
devices such as P-N Junctlons, planar doped ‘barriers, and one- and two-
dimensional superlattices; for these devices, it is clear that quantum
transport will indeed be necessary to explain their semiconductor transport

H%fS;’*”“”"'"°“*ZEKNOﬁiEﬁCﬁEﬁT"”* ;

~ The author wishes to thank Kathleen Lape” for editing and typing ?
this manuscript.
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